Discrete Mathematics

Lecture 01

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence

Benha University

Spring 2023

Introduce Myself

Dr．Ahmed Hagag

Scientific Computing Department， Faculty of Computers and Artificial Intelligence， Benha University．

Email：ahagag $⿴ 囗 十$ fci．bu．edu．eg

Basic Course Information

- Course code: FBS102-NBS102
- Course name: Discrete Mathematics
- Level: $1^{\text {st }}$ Year / B.Sc.
- Course Credit: $\mathbf{3}$ credits
- Instructor: Dr. Ahmed Hagag

Assessment

Lectures Reference

كلية الحاسبات والذكاء الإصطناعي

Textbook 2019

https://drive.google.com/drive/folders/1 a2rpYLZtEzuTyRZVqkN1mAnvIATd1dq6?u sp=sharing

Discussion Question

Why do we study this course?

Course Objectives

- Learn how to think mathematically.
- Grasp the basic logical and reasoning mechanisms of mathematical thought.
- Acquire logic and proof as the basics for abstract thinking.
- Improve problem-solving skills.
- Grasp the basic elements of induction, recursion, combination and discrete structures.

DM is a Gateway Course

Topics in discrete mathematics will be important in many courses that you will take in the future:

- Computer Science: Computer Architecture, Data Structures, Algorithms, Programming Languages, Compilers, Computer Security, Databases, Artificial Intelligence, Networking, Graphics, Game Design, Theory of Computation,
- Mathematics: Logic, Set Theory, Probability, Number Theory, Abstract Algebra, Combinatorics, Graph Theory, Game Theory, Network Optimization, ...
- Other Disciplines: You may find concepts learned here useful in courses in philosophy, economics, linguistics, and other departments.

Course Syllabus

Some topics from the following chapters:

- The Foundations: Logic and Proofs.
- Basic Structures: Sets, Functions, Sequences, and Sums.
- Algorithms.
- Number Theory and Cryptography.
- Induction and Recursion.
- Relations.
- Graphs.
- Trees.

Chapter 1: Logic and Proofs

Some topics from the following sections:

- Introduction to Propositional Logic.
- Compound Propositions.
- Applications of Propositional Logic.
- Propositional Equivalences.
- Predicates and Quantifiers.
- Nested Quantifiers
- Rules of Inference.
- Introduction to Proofs.

Introduction to Propositional Logic (1/4)

What is Logic?

- Logic is the discipline that deals with the methods of reasoning.
- On an elementary level, logic provides rules and techniques for determining whether a given argument is valid.
- Logical reasoning is used in mathematics to prove theorems.

Introduction to Propositional Logic (2/4)

- The basic building blocks of logic is Proposition
- A proposition (or statement) is a declarative sentence that is either true or false, but not both.
- The area of logic that deals with propositions is called propositional logics.

Introduction to Propositional Logic (3/4)

كلية الحاسبات والذكاء الإصطناعي

Examples:

Propositions	Truth value
$2+3=5$	True
$5-2=1$	False
Today is Friday	False
$x+3=7, \quad$ for $x=4$	True
Cairo is the capital of Egypt	True

Sentences	Is a Proposition
What time is it?	Not propositions
Read this carefully.	Not propositions
$x+3=7$	Not propositions

Introduction to Propositional Logic (4/4)

```
كلية الحاسبات والذكاء الإصطناعي
```

- We use letters to denote propositional variables p, q, r, s, \ldots
- The truth value of a proposition is true, denoted by T, if it is a true proposition and false, denoted by \mathbf{F}, if it is a false proposition.

Compound Propositions (1/23)

Compound Proposition

- Compound Propositions are formed from existing propositions using logical operators.

Compound Propositions (2/23)

كلية الحاسبات والذكاء الإصطناعي

Negation

DEFINITION 1

Let p be a proposition. The negation of p, denoted by $\neg p($ also denoted by $\bar{p})$, is the statement "It is not the case that p."

The proposition $\neg p$ is read "not p." The truth value of the negation of $p, \neg p$, is the opposite of the truth value of p.

Other notations you might see are $\sim p,-p, p^{\prime}, \mathrm{N} p$, and $!p$.

Compound Propositions (3/23)

كلية الحاسبات والذكاء الإصطناعي

Example

Find the negation of the proposition
p: "Cairo is the capital of Egypt"

Compound Propositions (4/23)

Example: Solution

Find the negation of the proposition
p: "Cairo is the capital of Egypt"
The negation is
$\neg p$: "It is not the case that Cairo is the capital of Egypt"
This negation can be more simply expressed as
$\neg p$: "Cairo is not the capital of Egypt"

Compound Propositions (5/23)

Truth Table

- Truth Table: is a table that gives the truth values of a compound statement.

The Truth Table for the Negation of a Proposition

Compound Propositions (5/23)

Truth Table

- Truth Table: is a table that gives the truth values of a compound statement.

The Truth Table for the Negation of a Proposition

Compound Propositions (6/23)

كلية الحاسبات والذكاء الإصطناعي

Negation

TABLE 1 The Truth Table for the Negation of a Proposition.

\boldsymbol{p}	$\neg \boldsymbol{p}$
T	F
F	T

Compound Propositions (7/23)

Logical Connectives

DEFINITION 2

Let p and q be propositions. The conjunction of p and q, denoted by $p \wedge q$, is the proposition " p and q." The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

Example

$p: \quad$ Today is Friday.
q : It is raining today.
$p \wedge q$: Today is Friday and it is raining today.

TABLE 2 The Truth Table for the Conjunction of Two Propositions.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	F

Compound Propositions (8/23)

Logical Connectives

DEFINITION 3

Let p and q be propositions. The disjunction of p and q, denoted by $p \vee q$, is the proposition " p or q." The disjunction $p \vee q$ is false when both p and q are false and is true otherwise.

Example

$p: \quad$ Today is Friday.
$q: \quad$ It is raining today.
$p \vee q$: Today is Friday or it is raining today.

TABLE 3 The Truth Table for the Disjunction of Two Propositions.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \vee \boldsymbol{q}$
T	T	T
T	F	T
F	T	T
F	F	F

Compound Propositions (9/23)

Logical Connectives

DEFINITION 4

Let p and q be propositions. The exclusive or of p and q, denoted by $p \oplus q$ (or $p \mathrm{XOR} q$), is the proposition that is true when exactly one of p and q is true and is false otherwise.

Example

p : They are parents.
q : They are children.
$p \oplus q$: They are parents or children but not both.

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \oplus \boldsymbol{q}$
T	T	F
T	F	T
F	T	T
F	F	F

Compound Propositions (10/23)

Logical Connectives

DEFINITION 5

Let p and q be propositions. The conditional statement $p \rightarrow q$ is the proposition "if p, then q." The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \rightarrow q, p$ is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence).
"if p, then q "
"if p, q "
" p is sufficient for q "
" q if p "
" q when p "
"a necessary condition for p is q " " q unless $\neg p$ "

TABLE 5 The Truth Table for the Conditional Statement$p \rightarrow q .$		
p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

" p implies q "
" p only if q "
"a sufficient condition for q is p "
" q whenever p "
" q is necessary for p "
" q follows from p "

Compound Propositions (10/23)

Logical Connectives

DEFINITION 5

Let p and q be propositions. The conditional statement $p \rightarrow q$ is the proposition "if p, then q." The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \rightarrow q, p$ is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence).
"if p, then q "
"if p, q "
" p is sufficient for q "
" q if p "
" q when p "
"a necessary condition for p is q " " q unless $\neg p$ "

TABLE 5 The Truth Table for the Conditional Statement$p \rightarrow q .$		
p	q	$p \rightarrow q$
T	T	T
T	F	
F	T	T
F	F	T

" p implies q "
" p only if q "
"a sufficient condition for q is p "
" q whenever p "
" q is necessary for p "
" q follows from p "

Compound Propositions (11/23)

كلية الحاسبات والذكاء الإصطناعي

Logical Connectives

EXAMPLE 1
"If you get 100% on the final, then you will get an A."

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not get 100% you may or may not receive an A depending on other factors. However, if you do get 100%, but the professor does not give you an A, you will feel cheated.

Compound Propositions (12/23)

كلية الحاسبات والذكاء الإصطناعي

Logical Connectives

EXAMPLE 2
Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

Compound Propositions (12/23)

كلية الحاسبات والذكاء الإصطناعي

Logical Connectives

EXAMPLE 2

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.
"If Maria learns discrete mathematics, then she will find a good job."
"Maria will find a good job when she learns discrete mathematics."

Compound Propositions (13/23)

كلية الحاسبات والذكاء الإصطناعي

Logical Connectives

EXAMPLE 3
"If today is Friday, then $2+3=6$."

Compound Propositions (13/23)

Logical Connectives

EXAMPLE 3
"If today is Friday, then $2+3=6$."
is true every day except Friday, even though $2+3=6$ is false.

Compound Propositions (14/23)

Logical Connectives

DEFINITION 6

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition " p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called bi-implications.

TABLE 6 The Truth Table for the Biconditional $\boldsymbol{p} \leftrightarrow \boldsymbol{q}$.			
\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \leftrightarrow \boldsymbol{q}$	
T	T	T	
T	F	F	
F	T	F	
F	F	T	

"You can take the flight if and only if you buy a ticket."

Compound Propositions (15/23)

Truth Tables of Compound Propositions

example 1
Construct the truth table of the compound proposition $(p \vee \neg q) \rightarrow(p \wedge q)$.

Compound Propositions (16/23)

Truth Tables of Compound Propositions

example 1
Construct the truth table of the compound proposition
$(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(p \vee \neg q) \rightarrow(p \wedge q)$					
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T				
T	F				
F	T				
F	F				

Compound Propositions (16/23)

Truth Tables of Compound Propositions

example 1
Construct the truth table of the compound proposition
$(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(p \vee \neg q) \rightarrow(p \wedge q)$					
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T	F			
T	F	T			
F	T	F			
F	F	T			

Compound Propositions (16/23)

Truth Tables of Compound Propositions

example 1
Construct the truth table of the compound proposition
$(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(p \vee \neg q) \rightarrow(p \wedge q)$					
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T	F	T		
T	F	T	T		
F	T	F	F		
F	F	T	T		

Compound Propositions (16/23)

Truth Tables of Compound Propositions

example 1
Construct the truth table of the compound proposition
$(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(\boldsymbol{p} \vee \neg q) \rightarrow(p \wedge q)$					
\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\boldsymbol{p} \vee \neg \boldsymbol{q}$	$\boldsymbol{p} \wedge q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T	F	T	T	
T	F	T	T	F	
F	T	F	F	F	
F	F	T	T	F	

Compound Propositions (16/23)

Truth Tables of Compound Propositions

example 1
Construct the truth table of the compound proposition $(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(\boldsymbol{p} \vee \neg \boldsymbol{q}) \rightarrow(\boldsymbol{p} \wedge \boldsymbol{q})$					
\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\boldsymbol{p} \vee \neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$(\boldsymbol{p} \vee \neg \boldsymbol{q}) \rightarrow(\boldsymbol{p} \wedge \boldsymbol{q})$
T	T	F	T	T	T
T	F	T	T	F	F
F	T	F	F	F	T
F	F	T	T	F	F

Compound Propositions (17/23)

كلية الحاسبات والذكاء الإصطناعي

Precedence of Logical Operators

TABLE 8 Precedence of Logical Operators.	
Operator	Precedence
\neg	1
\wedge	2
\vee	3
\rightarrow	4
\leftrightarrow	5

Compound Propositions (18/23)

```
كلية الحاسبات والذكاء الإصطناعي
```


Truth Tables of Compound Propositions

EXAMPLE 2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE 2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE 2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
\mathbf{T}	\mathbf{T}	\mathbf{T}			
\mathbf{T}	\mathbf{T}	\mathbf{F}			
\mathbf{T}	\mathbf{F}	\mathbf{T}			
\mathbf{T}	\mathbf{F}	\mathbf{F}			
\mathbf{F}	\mathbf{T}	\mathbf{T}			
\mathbf{F}	\mathbf{T}	\mathbf{F}			
\mathbf{F}	\mathbf{F}	\mathbf{T}			
\mathbf{F}	\mathbf{F}	\mathbf{F}			

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE 2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

\boldsymbol{p}	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}		
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}		
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}		
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}		
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}		
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}		
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}		
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}		

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE 2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE 2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow r$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}

Compound Propositions (20/23)

Logic and Bit Operations

- Computers represent information using bits. A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one).

Compound Propositions (21/23)

Computer Bit Operations

- We will also use the notation OR, AND, and XOR for the operators \vee, \wedge, and \oplus, as is done in various programming languages.

TABLE 9 Table for the Bit Operators $\boldsymbol{O R}$, $A N D$, and $X O R$.

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{x} \vee \boldsymbol{y}$	$\boldsymbol{x} \wedge \boldsymbol{y}$	$\boldsymbol{x} \oplus \boldsymbol{y}$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Compound Propositions (22/23)

كلية الحاسبات والذكاء الإصطناعي

Bit Strings

- Information is often represented using bit strings, which are lists of zeros and ones. When this is done, operations on the bit strings can be used to manipulate this information.

A bit string is a sequence of zero or more bits. The length of this string is the number of bits in the string.

```
101010011 is a bit string of length nine.
```


Compound Propositions (23/23)

Example

- Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 0110110110 and 1100011101

0110110110
1100011101
1110111111 bitwise $O R$
0100010100 bitwise AND
1010101011 bitwise XOR

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLx|vc-MGCsGgZIMVY

Lecture \#|: https://www.youtube.com/watch?v=eFDzhnilnc48list=PLxlvcMEDsEqZIMVY

https://www.youtube.com/watch?v=dCZBBam4BksClist=PLx|vcMEDsBgZIMVYOEEtUHUImfUquLjiwzZindex=2
https://www.youtube.com/watch?v=-BxvBFJaNGE\&list=PLxlvcMEDsEgZIMVYOEEtUHUmfUquLjiwzZiindex=3

Thank You

Dr. Ahmed Hagag
ahagag@fri.bu.edu.eg

