

Discrete Mathematics

Lecture 01

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Dr. Ahmed Hagag

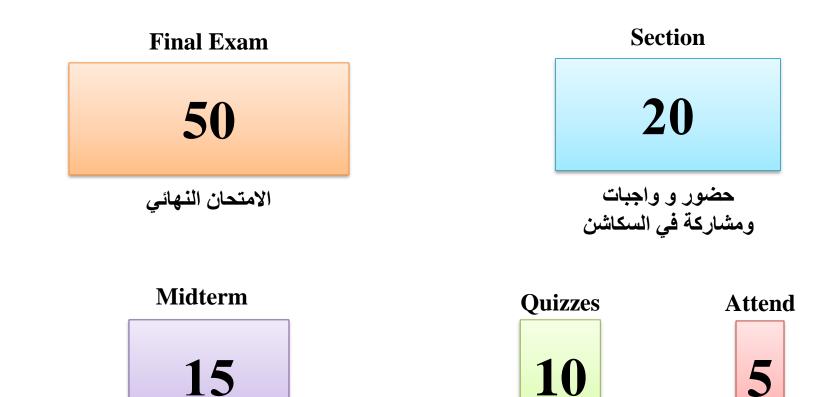
Scientific Computing Department, Faculty of Computers and Artificial Intelligence, Benha University.

Email: ahagag@fci.bu.edu.eg

- Course code: FBS102-NBS102
- Course name: Discrete Mathematics
- Level: 1st Year / B.Sc.
- Course Credit: 3 credits
- Instructor: Dr. Ahmed Hagag

الاختبارات

الفصلية



منتصف الفصل

حضور

Lectures Reference

Kenneth H. Rosen

Discrete Mathematics and Its Applications

Eighth Edition

Textbook 2019

https://drive.google.com/drive/folders/1 a2rpYLZtEzuTyRZVqkN1mAnvlATd1dq6?u sp=sharing

©Ahmed Hagag

Discrete Mathematics

Discussion Question

Why do we study this course?

©Ahmed Hagag

Discrete Mathematics

Course Objectives

- Learn how to think mathematically.
- Grasp the basic logical and reasoning mechanisms of mathematical thought.
- Acquire logic and proof as the basics for abstract thinking.
- Improve problem-solving skills.
- Grasp the basic elements of induction, recursion, combination and discrete structures.

Topics in discrete mathematics will be important in many courses that you will take in the future:

- **Computer Science:** Computer Architecture, Data Structures, Algorithms, Programming Languages, Compilers, Computer Security, Databases, Artificial Intelligence, Networking, Graphics, Game Design, Theory of Computation,
- Mathematics: Logic, Set Theory, Probability, Number Theory, Abstract Algebra, Combinatorics, Graph Theory, Game Theory, Network Optimization, ...
- Other Disciplines: You may find concepts learned here useful in courses in philosophy, economics, linguistics, and other departments.

Course Syllabus

Some topics from the following chapters:

- The Foundations: Logic and Proofs.
- Basic Structures: Sets, Functions, Sequences, and Sums.
- Algorithms.
- Number Theory and Cryptography.
- Induction and Recursion.
- Relations.
- Graphs.
- Trees.

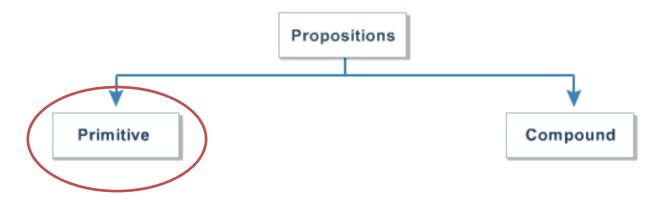
Some topics from the following sections:

- Introduction to Propositional Logic.
- Compound Propositions.
- Applications of Propositional Logic.
- Propositional Equivalences.
- Predicates and Quantifiers.
- Nested Quantifiers
- Rules of Inference.
- Introduction to Proofs.

What is Logic?

- Logic is the discipline that deals with the methods of reasoning.
- On an elementary level, logic provides rules and techniques for determining whether a given argument is valid.
- Logical reasoning is used in mathematics to prove theorems.

- The basic building blocks of logic is **Proposition**
- A proposition (or statement) is a **declarative sentence** that is either **true** or **false**, but **not both**.
- The area of logic that deals with propositions is called **propositional logics**.



Introduction to Propositional Logic (3/4)

Examples:

Propositions	Truth value		
2 + 3 = 5	True		
5 - 2 = 1	False		
Today is Friday	False		
x + 3 = 7, for $x = 4$	True		
Cairo is the capital of Egypt	True		

Sentences	Is a Proposition
What time is it?	Not propositions
Read this carefully.	Not propositions
x + 3 = 7	Not propositions

- We use letters to denote propositional variables p,q,r,s,...
- The truth value of a proposition is true, denoted by **T**, if it is a true proposition and false, denoted by **F**, if it is a false proposition.

Compound Proposition

• Compound Propositions are formed from existing propositions using logical operators.

Negation

DEFINITION 1

Let *p* be a proposition. The *negation of p*, denoted by $\neg p$ (also denoted by \overline{p}), is the statement "It is not the case that *p*."

The proposition $\neg p$ is read "not *p*." The truth value of the negation of *p*, $\neg p$, is the opposite of the truth value of *p*.

Other notations you might see are $\sim p, -p, p', Np$, and !p.

- Find the negation of the proposition
- *p*: "Cairo is the capital of Egypt"

Example: Solution

- Find the negation of the proposition
- p: "Cairo is the capital of Egypt"

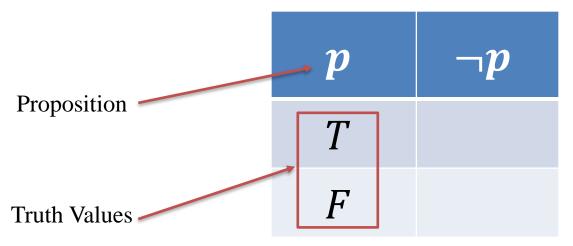
The negation is

- $\neg p$: "It is not the case that Cairo is the capital of Egypt"
- This negation can be more simply expressed as
- $\neg p$: "Cairo is **not** the capital of Egypt"

Truth Table

• Truth Table: is a table that gives the truth values of a compound statement.

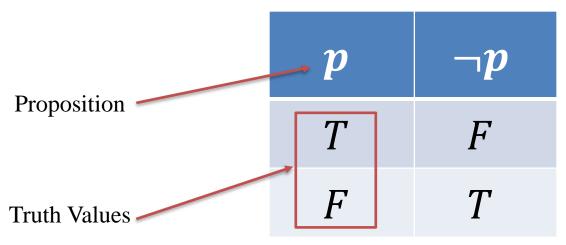
The Truth Table for the Negation of a Proposition



Truth Table

• Truth Table: is a table that gives the truth values of a compound statement.

The Truth Table for the Negation of a Proposition



Compound Propositions (6/23)

Negation

TABLE 1TheTruth Table forthe Negation of aProposition.

р	$\neg p$
Т	F
F	Т

DEFINITION 2

Let *p* and *q* be propositions. The *conjunction* of *p* and *q*, denoted by $p \land q$, is the proposition "*p* and *q*." The conjunction $p \land q$ is true when both *p* and *q* are true and is false otherwise.

- *p*: Today is Friday.
- *q*: It is raining today.
- $p \land q$: Today is Friday and it is raining today.

TABLE 2 The Truth Table forthe Conjunction of TwoPropositions.						
р	$p q p \wedge q$					
Т	Т	Т				
Т	T F F					
F T F						
F F F						

DEFINITION 3

Let *p* and *q* be propositions. The *disjunction* of *p* and *q*, denoted by $p \lor q$, is the proposition "*p* or *q*." The disjunction $p \lor q$ is false when both *p* and *q* are false and is true otherwise.

- *p*: Today is Friday.
- *q*: It is raining today.
- $p \lor q$: Today is Friday or it is raining today.

TABLE 3 The Truth Table forthe Disjunction of TwoPropositions.						
р	p q $p \lor q$					
Т	Т	Т				
Т	T F T					
F T T						
F F F						

DEFINITION 4

Let *p* and *q* be propositions. The *exclusive or* of *p* and *q*, denoted by $p \oplus q$ (or $p \operatorname{XOR} q$), is the proposition that is true when exactly one of *p* and *q* is true and is false otherwise.

- p: They are parents.
- q: They are children.
- $p \oplus q$: They are parents or children but not both.

TABLE 4The Truth Table forthe Exclusive Or of TwoPropositions.				
p q $p \oplus q$				
Т	Т	F		
Т	F	Т 🔶		
F	Т	Т 🔶		
F	F	F		

DEFINITION 5

Let *p* and *q* be propositions. The *conditional statement* $p \rightarrow q$ is the proposition "if *p*, then *q*." The conditional statement $p \rightarrow q$ is false when *p* is true and *q* is false, and true otherwise. In the conditional statement $p \rightarrow q$, *p* is called the *hypothesis* (or *antecedent* or *premise*) and *q* is called the *conclusion* (or *consequence*).

```
"if p, then q"
"if p, q"
"p is sufficient for q"
"q if p"
"q when p"
"a necessary condition for p is q"
."q unless ¬p"
```

TABLE 5 The Truth Table forthe Conditional Statement $p \rightarrow q$. $p \rightarrow q$

Т

F

Т

F

Т

F

Τ

Т

Т

Т

F

F

"p implies q" "p only if q" "a sufficient condition for q is p" "q whenever p" "q is necessary for p" "q follows from p"

DEFINITION 5

Let *p* and *q* be propositions. The *conditional statement* $p \rightarrow q$ is the proposition "if *p*, then *q*." The conditional statement $p \rightarrow q$ is false when *p* is true and *q* is false, and true otherwise. In the conditional statement $p \rightarrow q$, *p* is called the *hypothesis* (or *antecedent* or *premise*) and *q* is called the *conclusion* (or *consequence*).

```
"if p, then q"
"if p, q"
"p is sufficient for q"
"q if p"
"q when p"
"a necessary condition for p is q"
."q unless ¬p"
```

TABLE 5 The Truth Table for
the Conditional Statement
 $p \rightarrow q$.

р	q	p ightarrow q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

"p implies q" "p only if q" "a sufficient condition for q is p" "q whenever p" "q is necessary for p" "q follows from p"

Compound Propositions (11/23)

Logical Connectives

EXAMPLE 1

"If you get 100% on the final, then you will get an A."

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not get 100% you may or may not receive an A depending on other factors. However, if you do get 100%, but the professor does not give you an A, you will feel cheated.

EXAMPLE 2

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

EXAMPLE 2

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

"If Maria learns discrete mathematics, then she will find a good job."

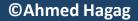
"Maria will find a good job when she learns discrete mathematics."

Compound Propositions (13/23)

Logical Connectives

EXAMPLE 3

"If today is Friday, then 2 + 3 = 6."



EXAMPLE 3

"If today is Friday, then 2 + 3 = 6."

is true every day except Friday, even though 2 + 3 = 6 is false.

DEFINITION 6

Let *p* and *q* be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition "*p* if and only if *q*." The biconditional statement $p \leftrightarrow q$ is true when *p* and *q* have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

"*p* is necessary and sufficient for *q*" "if *p* then *q*, and conversely" "*p* iff *q*." "*p* exactly when *q*."

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.				
р	q	$p \leftrightarrow q$		
Т	Т	Т ←		
Т	F	F		
F	Т	F		
F	F	T 🗲		

"You can take the flight if and only if you buy a ticket."

example 1

example 1

TABLE 7 The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.					
р	q	-¬q	$p \lor \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$
Т	Т				
Т	F				
F	Т				
F	F				

example 1

TAB	TABLE 7 The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.					
р	q	-¬q	$p \lor \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$	
Т	Т	F				
Т	F	Т				
F	Т	F				
F	F	Т				

example 1

TAB	TABLE 7 The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.					
р	q	¬q	$p \lor \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$	
Т	Т	F	Т			
Т	F	Т	Т			
F	Т	F	F			
F	F	Т	Т			

example 1

Construct the truth table of the compound proposition $(p \lor \neg q) \rightarrow (p \land q).$

TAB	TABLE 7 The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.							
р	q	-¬q	$p \lor \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$			
Т	Т	F	Т	Т				
Т	F	Т	Т	F				
F	Т	F	F	F				
F	F	Т	Т	F				

example 1

Construct the truth table of the compound proposition $(p \lor \neg q) \rightarrow (p \land q).$

TABLE 7 The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.							
$p q \neg q p \lor \neg q p \land q (p \lor \neg q) \to (p \land q)$							
Т	Т	F	Т	Т	Т		
Т	F	Т	Т	F	F		
F	Т	F	F	F	Т		
F	F	Т	Т	F	F		

Compound Propositions (17/23)

Precedence of Logical Operators

TABLE 8Precedence ofLogical Operators.							
Operator Precedence							
-	1						
∧ ∨	2 3						
\rightarrow \leftrightarrow	4 5						

example 2

Construct the truth table of the compound proposition $(p \land \neg q) \rightarrow r$

example 2

Construct the truth table of the compound proposition $(p \land \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) ightarrow r$

©Ahmed Hagag

EXAMPLE 2

Construct the truth table of the compound proposition $(p \land \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) ightarrow r$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

©Ahmed Hagag

EXAMPLE 2

Construct the truth table of the compound proposition $(p \land \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) ightarrow r$
Т	Т	Т	F		
Т	Т	F	F		
Т	F	Т	Т		
Т	F	F	Т		
F	Т	Т	F		
F	Т	F	F		
F	F	Т	Т		
F	F	F	Т		

©Ahmed Hagag

EXAMPLE 2

Construct the truth table of the compound proposition $(p \land \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) ightarrow r$
Т	Т	Т	F	F	
Т	Т	F	F	F	
Т	F	Т	Т	Т	
Т	F	F	Т	Т	
F	Т	Т	F	F	
F	Т	F	F	F	
F	F	Т	Т	F	
F	F	F	Т	F	

EXAMPLE 2

Construct the truth table of the compound proposition $(p \land \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \wedge \neg q$	$(p \land \neg q) ightarrow r$
Т	Т	Т	F	F	Т
Т	Т	F	F	F	Т
Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	F
F	Т	Т	F	F	Т
F	Т	F	F	F	Т
F	F	Т	Т	F	Т
F	F	F	Т	F	Т

Logic and Bit Operations

• Computers represent information using **bits**. A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one).

Truth Value	Bit
Т	1
F	0

Computer Bit Operations

• We will also use the notation OR, AND, and XOR for the operators V, Λ , and \bigoplus , as is done in various programming languages.

TABLE 9 Table for the Bit Operators <i>OR</i> , <i>AND</i> , and <i>XOR</i> .							
x	у	$x \lor y$	$x \wedge y$	$x \oplus y$			
0	0	0	0	0			
0	1	1	0	1			
1	0	1	0	1			
1	1	1	1	0			

Bit Strings

• Information is often represented using bit strings, which are lists of zeros and ones. When this is done, operations on the bit strings can be used to manipulate this information.

A *bit string* is a sequence of zero or more bits. The *length* of this string is the number of bits in the string.

101010011 is a bit string of length nine.

Example

• Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and 11 0001 1101

1110111111bitwise OR0100010100bitwise AND1010101011bitwise XOR

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MGOs6gZIMVYDDEtUHJmfUquCjwz

Lecture #1: https://www.youtube.com/watch?v=eFDzhn1Inc4&list=PLxlvc-MGDs6gZIMVYDDEtUHJmfUquCjwz&index=1

https://www.youtube.com/watch?v=d0Z6Bam4Bks&list=PLxlvc-MG0s6gZIMVY00EtUHJmfUquCjwz&index=2

https://www.youtube.com/watch?v=-BxvBFJaN6E&list=PLxlvc-MGDs6gZIMVYD0EtUHJmfUquCjwz&index=3

Thank You

Dr. Ahmed Hagag ahagag@fci.bu.edu.eg